МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ

Первый заместитель Министра

Д.Л. Пиневич

Регистрационный № 116 - 1216

Метод выбора трансплантата для хирургического лечения ретракционного кармана барабанной перепонки

инструкция по применению

Учреждения - разработчики:

государственное учреждение «Республиканский научно практический центр оториноларингологии»,

государственное учреждение образования «Белорусская медицинская академия последипломного образования»,

государственное учреждение образования «Белорусский государственный университет»

Авторы:

Майсюк М.М., д.м.н., профессор Петрова Л.Г., к.м.н. Еременко Ю.Е., д.ф.м.н., профессор Михасев Г.И., к.ф.м.н., доцент Босяков С.М., к.ф.м.н., доцент Юркевич К.С.

В настоящей инструкции по применению (далее - инструкция) изложен метод, который может быть использован в комплексе медицинских услуг, направленных на лечение ретракционного кармана барабанной перепонки. Внедрение метода, изложенного в инструкции, в работу организаций здравоохранения позволит оптимизировать результаты хирургического лечения ретракционного кармана, на ранних этапах его формирования: улучшить слуха - функциональные показатели, снизить риск развития рецидива заболевания, предупредить формирование ректракционной холестеатомы.

Область применения: оториноларингология.

Инструкция предназначена для врачей-оториноларингологов стационарного звена системы организации здравоохранения.

Показания к применению:

Пациенты с ретракционным карманом задневерхнего квадранта барабанной перепонки.

Противопоказания к применению:

Противопоказаний нет.

Перечень необходимых исследований:

- 1. Сбор жалоб и анамнестических данных.
- 2. Отоскопия, отомикроскопия, функциональное состояние слуховой трубы.
 - 3. Аудиограмма, тимпанограмма.
- 4. Лучевые методы диагностики (рентгенограмма височных костей по Шюллеру, Маейру; компьюторная томография височных костей).

Перечень необходимого оборудования:

1. Аудиометр для исследования слуховой функции.

- 2. Импедансометр для определения функции слуховой трубы.
- 3. Микроскоп для отомикроскопии.
- 4. Рентгеновский аппарат/компьютерный томограф.

Описание метода с указанием этапов:

1 этап: отбор пациентов для хирургического лечения.

Описание этапа:

Проводит врач-оториноларинголог.

1. Сбор жалоб и анамнеза заболевания.

Жалобы пациента: снижение слуха или периодическая заложенность уха. В анамнезе заболевания пациента отмечаются: а) перенесенные заболевания: рецидивирующие острые средние отиты, экссудативные средние отиты, б) перенесенные ранее оперативные лечения уха: парацентез (миринготомия), шунтирование барабанных полостей.

- 2. Выполняется отомикроскопия. Результат отомикроскопии подтверждает наличие сформированного ретракционного кармана задневерхнего квадранта барабанной перепонки.
- 3. Выполняется тимпанограмма. Результат тимпанограммы: тип C, тип A, тип A_{π} на момент осмотра пациента.
- 4. Проверяется проходимость слуховой (евстахиевой) трубы. На момент осмотра пациента слуховая (евстахиева) труба проходима при самопродувании и (или) по Политцеру.
- 5. Выполняется компьютерная томография или рентгенограмма височных костей в проекции Шюллера и Майера.

Результат: отсутствие наличия патологического компонента в барабанной полости и ячейках сосцевидного отростка на момент исследования.

6. Выполняется аудиограмма.

2 этап: определение упругих свойств ретракционного кармана.

Описание этапа:

отбор на Данные аудиограммы пациента, прошедшего хирургическое лечение, сопоставляются С моделями аудиограмм, полученными на основании гармонического анализа колебательной системы среднего уха при различных значениях звукового давления с использованием метода конечных элементов (Приложение). Под моделью аудиограммы подразумевается визуализация порога проведения звука частотой 1 кГц, 2 кГц, 3 кГц, 4 кГц и 5 кГц через среднее ухо при звуковом давлении 10 дБ, 20 дБ, 30 дБ, 40 дБ, 50 дБ и 60 дБ в случае патологического изменения упругих свойств задневерхнего квадранта, соответствующего модулям упругости из диапазона от 22 МПа до 34 кПа.

На основании сравнительного анализа моделей аудиограмм и аудиограмм, полученных В ходе обследования пациента, оториноларинголог определяет модуль упругости ретракционного Патологические кармана задневерхнего квадранта. изменения барабанной эластичности задневерхнего квадранта перепонки описываются модулями упругости, соответствующими определенным воздушной проводимости, отраженными моделях аудиограмм (таблица 1).

Таблица 1 - Определение модуля упругости ретракционного кармана

Модель аудиограммы	Модуль упругости РК	
. №1	22 МПа	
№2	11 МПа	
№3	9 MTa	
№4	3 МПа	
№5	0,1 МПа	
№6	0,034 МПа	

3 этап: определение толщины хрящевого трансплантата.

Описание этапа:

Конечно - элементное компьютерное моделирование показало, что упругости ретракционного кармана влияет на трансплантата, используемого ДЛЯ хирургического ретракционного кармана на ранних этапах его формирования. Для сохранения слуха - функциональных показателей и снижения риска развития рецидива заболевания необходимо применение хрящевого трансплантата определенной толщины. Таким образом, каждому модулю упругости ретракционного кармана соответствует определенная толщина трансплантата (таблица 2). Врач-оториноларинголог определяет толщину хрящевого трансплантата по соответствующей таблице.

Таблица 2 - Определение толщины хрящевого трансплантата по модулю упругости ретракционного кармана

Модуль упругости Р	К Диапазон выбора толщины хрящевого трансплантата
22 МПа	40 — 650 мкм
11 МПа	360 - 450 мкм
9 МПа	400 – 650 мкм
3 МПа	450 - 580 мкм
0,1 МПа	1800 — 2200 мкм
0,034 МПа	2000 — 2200 мкм

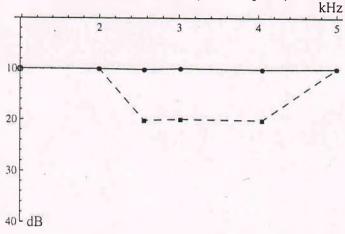
4 этап: оценка полученных результатов.

Описание этапа:

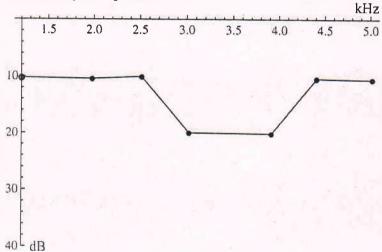
При оценке полученных результатов врач-оториноларинголог определяет возможный диапазон компенсации частот потери слуха с учетом толщины хрящевого трансплантата по соответствующей таблице (таблица 3).

Таблица 3 – Определение частот компенсации потери слуха

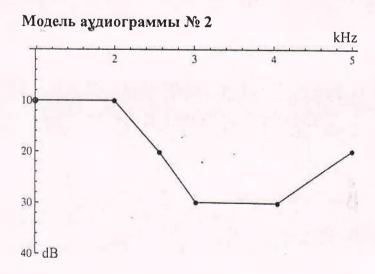
Модуль упругости РК	Диапазон выбора толщины хрящевого	Диапазон компенсации частот потери	Компенсация частот из слухового диапазона
	трансплантата	слуха	
22 МПа	40 – 650 мкм	от 2.0 кГц до 5 кГц	возможна*
11 МПа	360 - 450 мкм	от 2.3 кГц до 5 кГц	возможна
9 МПа	400 – 650 мкм	все собственные частоты	возможна
3 МПа	450 - 580 мкм	все собственные частоты	оптимальна
0,1 МПа	1800 – 2200 мкм	от 2.5 кГц до 4 кГц	возможна*
0,034 МПа	2000 – 2200 мкм	от 2.5 кГц до 3.5 кГц	возможна*


Примечание: * - нужно учитывать, что чем шире диапазон выбора толщины хрящевого трансплантата, тем технически сложнее одновременно добиться компенсации частот в разных диапазонах (и высоких и низких частотах).

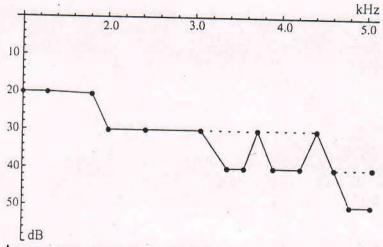
Возможные ошибки, осложнения и пути их устранения:


Возможны технические неточности и канцелярские ошибки при сопоставлении данных результатов исследования и невнимательной оценке результатов медработником.

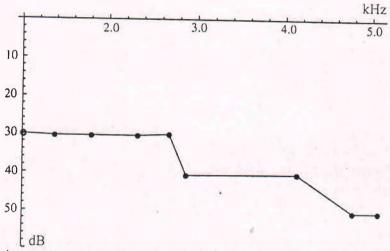
Приложение - Модели аудиограмм


Модель аудиограммы для уха в норме (сплошная линия)

Модель аудиограммы № 1

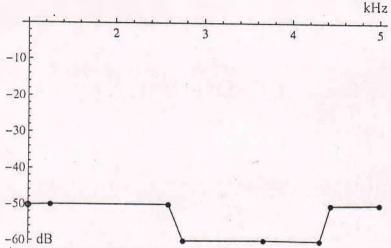

Аудиограмма для уха с задневерхним квадрантом, у которого модуль упругости составляет 22 МПа.

Аудиограмма для уха с задневерхним квадрантом, у которого модуль упругости составляет 11 МПа.

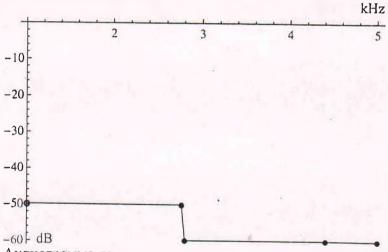

Продолжение приложения

Модель аудиограммы № 3

Аудиограмма для уха с задневерхним квадрантом, у которого модуль упругости составляет 9 MПа.


Модель аудиограммы № 4

Аудиограмма для уха с задневерхним квадрантом, у которого модуль упругости составляет 3 МПа.


Продолжение приложения

Модель аудиограммы № 5

Аудиограмма для уха с задневерхним квадрантом, у которого модуль упругости составляет 0.1 МПа.

Модель аудиограммы № 6

Аудиограмма для уха с задневерхним квадрантом, у которого модуль упругости составляет 0.034 МПа.